永利集团,教授,博导,2003年获取yl9193永利官网信息学院博士学位。研究方向为AI和数据管理结合、图数据管理和深度分析等,近期承担了国家科技重大专项、国家自然科学基金、深圳基础研究课题等一批国家级和省部级科研项目,以及与阿里、华为、中兴、电信等企业在内的一批产学合作研究项目。在数据管理领域会议和期刊上发表论文60余篇,获阿里巴巴高校合作优秀奖,CCF科技进步杰出奖,开发了ICS-GNN、LOGER、APrompt4EM等模型和方法,发表VLDB、ICDE、AAAI、IJCAI、WWW、KDD等研究论文,2024研究组囊括KDD CRAG比赛全部三个赛道第一名。相关技术在阿里巴巴公司大规模图数据上实际应用。
Hao Miao, Zida Liu, Jun Gao: BSG4Bot:Efficient Bot Detection based on Biased Heterogeneous Subgraphs. ICDE 2025
Jiazun Chen, Yikuan Xia, Jun Gao, Zhao Li, Hongyang Chen. CommunityDF: A Guided Denoising Diffusion Approach for Community Search. ICDE 2025
Chenhao Xu, Chunyu Chen, Jinlin Peng, Jiannan Wang, Jun Gao: BQSched: A Non-intrusive Scheduler for Batch Concurrent Queries via Reinforcement Learning, ICDE 2025
Suchen Liu, Jun Gao, Yinjun Han, Yanglin. MoEPlan: A Lazy Learned Query-Selection Optimizer via Mixture of Optimizer Experts. DASFAA 2025
Xiaoru Qu, Yifan Wang, Zhao Li, Jun Gao: Graph-Enhanced Prompt Learning for Personalized Review Generation. Data Sci. Eng. 9(3): 309-324 (2024)
Tianyi Chen, Jun Gao, Yaofeng Tu, Mo Xu: GLO: Towards Generalized Learned Query Optimization. ICDE 2024: 4843-4855
Yikuan Xia, Jiazun Chen, Jun Gao: Winning Solution For Meta KDD Cup' 24. CoRR abs/2410.00005 (2024)
Tianyi Chen, Jun Gao, Hedui Chen, Yaofen Tu. LOGER: A Learned Optimizer towards Generating Efficient and Robust Query Execution Plans. In Proc of VLDB 2023
Jianzun Chen, Yikuan Xia, Jun Gao. CommunityAF: An Example-based Community Search Method via Autoregressive Flow. In Proc of VLDB 2023
Jialin Wang, Xiaoru Qu, Jinze Bai, Zhao Li, Ji Zhang, Jun Gao: SAGES: Scalable Attributed Graph Embedding With Sampling for Unsupervised Learning. IEEE Trans. Knowl. Data Eng. 35(5): 5216-5229 (2023)
Hao Miao, Jiazun Chen, Yang Lin, Mo Xu, Yinjun Han, Jun Gao: JG2Time: A Learned Time Estimator for Join Operators Based on Heterogeneous Join-Graphs. DASFAA (1) 2023: 132-147
Jiazun Chen, Jun Gao, Bin Cui: ICS-GNN+: lightweight interactive community search via graph neural network. VLDB J. 32(2): 447-467 (2023)
Li Zheng, Zhao Li, Jun Gao, Zhenpeng Li, Jia Wu, Chuan Zhou: Domain Adaptation for Anomaly Detection on Heterogeneous Graphs in E-Commerce. ECIR (2) 2023: 304-318
Zhao Li, Junshuai Song, Zehong Hu, Zhen Wang, Jun Gao: Constrained Dual-Level Bandit for Personalized Impression Regulation in Online Ranking Systems. ACM Trans. Knowl. Discov. Data 16(2): 23:1-23:23 (2022)
Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao, Zhi Yang, Bin Cui: Model Degradation Hinders Deep Graph Neural Networks. KDD 2022: 2493-2503
Jiazun Chen, Jun Gao: VICS-GNN: A Visual Interactive System for Community Search via Graph Neural Network. ICDE 2022: 3150-3153
Junshuai Song, Xiaoru Qu, Zehong Hu, Zhao Li, Jun Gao, Ji Zhang: A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce. Neurocomputing 461: 587-597 (2021)
Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. ICS-GNN: Lightweight Interactive Community Search via Graph Neural Network. PVLDB, 14(6):1006 - 1018, 2021.
Yikuan Xia, Jun Gao, Bin Cui: iMap: Incremental Node Mapping between Large Graphs Using GNN. CIKM 2021: 2191-2200
Li Zheng, Jun Gao, Zhao Li, Ji Zhang: AdaBoosting Clusters on Graph Neural Networks. ICDM 2021: 1523-1528
Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, Jun Gao. ATJ-Net: Auto-Table-Join Network for Automatic Learning on Relational Databases. In Proc. of WWW 2021
Xiaoru Qu, Zhao Li, Jialin Wang, Zhipeng Zhang, Pengcheng Zou, Junxiao Jiang, Jiaming Huang, Rong Xiao, Ji Zhang, Jun Gao*: Category-aware Graph Neural Networks for Improving E-commerce Review Helpfulness Prediction. In Proc. of CIKM, 2020, Pages 2693-2700.
Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Jiaming Huang, Pengrui Hui, Jun Gao, Ji Zhang, and Zujie Ren. Recommendation on Heterogeneous Information Network with Type-sensitive Sampling. In Proc. of DASFAA, 2020, Pages 673-684. CCF B
Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li and Jun Gao. PoisonRec: An Adaptive Data Poisoning Framework for Attacking Black-box Recommender Systems. In Proc of ICDE 2020